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1. Introduction

This report is concerned with the performance of
software used in coordinate measurement systems
(CMSs) to evaluated the geometric characteristics of
manufactured parts. The particular performance char-
acteristics of interest are those that impact the uncer-
tainty of measurement results produced by CMSs.

Inspection planners need quantitative measures of
performance to develop uncertainty budgets and to eval-
uate the quality of measurement results. In support of
this need, NIST has recently established a Special Test
Service, the Algorithm Testing and Evaluation Program
for Coordinate Measurement Systems (ATEP-CMS), to
measure the performance of geometric fitting software
used in CMSs [1]. This report documents and explains
the performance measures used in ATEP-CMS.

Geometric fitting is the process of computing the
representation parameters of a geometric element that in
some sense best represents a set of point coordinate
data. This representative geometric element is called the

substitute geometryfor the data points. A manufactured
hole, for instance, is usually not perfectly cylindrical
because the process that produced it can never be totally
perfect. Inspection of the hole might involve measuring
the coordinates of selected points on the surface of the
hole, fitting a cylinder to the measured points to mini-
mize the sum of squares of the orthogonal distances
from the points to the cylinder, and comparing the posi-
tion, orientation, and size of the fitted cylinder to the
dimensions and tolerances of the part specification.

Many factors affect the accuracy of inspection proce-
dures.1 This report focuses on one of these factors: how
close the computed fit is to the intended, mathematically
defined, substitute geometry. The performance

1 ATEP-CMS—part of a larger field of endeavor calledcomputational
metrology[2]—addresses thefitting softwareas a source of uncer-
tainty due to possible computational errors. It does not address the
propagation of point coordinate uncertainty through the geometric
fitting computations, how well the points represent the surface, or
whether the intended software function is the most appropriate for the
task.
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measures used in ATEP-CMS quantify how well the
software computes substitute geometries over a range of
inspection problems.

The next section provides background information on
the need for algorithm testing, how ATEP-CMS works,
and criteria for performance measures. Section 3 pre-
sents details of the test methods used in ATEP-CMS for
various types of geometric elements. Section 4 discusses
a statistical interpretation of algorithm performance and
explains the method used in ATEP-CMS to summarize
and interpret the test results. Section 5 presents an un-
certainty analysis of ATEP-CMS results.

2. Background

The drive to develop methods for testing CMS
algorithms began in Germany in the early 1980s, when
it became apparent that the software supplied with com-
mercial coordinate measurement machines (CMMs)
varied widely in quality [3, 4]. In the United States, the
American Society of Mechanical Engineers established
a task force on CMM software that is now designated
B89.4.10. Work intensified in 1988 following wide-
spread notification within the defense industries of
serious problems with certain commercial CMM
software [5]. A U.S. standard on performance evaluation
of CMS software is now in draft form and is expected to
be issued for public review in early 1996 [6]. NIST’s
ATEP-CMS service [1] supports this emerging
standard.

2.1 What is Evaluated by ATEP

When discussing software, the term “testing” is used
in many different ways, and it is important to understand
the sense in which it is used within ATEP-CMS. It is
specificallynot used in the sense of software engineer-
ing, where software testing is aimed at supporting de-
bugging or maintenance and typically involves code
structure analysis, walk-throughs, and similar activities.
Within ATEP-CMS, testing is strictly limited to black-
box testing of how the actual behavior of the software
compares with its intended behavior. Moreover, ATEP-
CMS restricts itself to measuring the accuracy of re-
ported results. Other performance characteristics—such
as memory requirements, computing time, ease of use,
and other factors—are not considered. In sum, ATEP-
CMS ignores the fact that the software under test is
software; the ATEP-CMS process would be unchanged
if the fitting methods were implemented with an analog
computer, as a digital filter circuit, or even mechanically
[7].

ATEP-CMS does not address whether the intended
behavior of the software isappropriatefor a particular
measurement task. That issue is not one of performance,
but of whether a particular data analysis method is the
right tool for the job. Such considerations are beyond the
scope of a performance testing program.

ATEP-CMS currently supports testing of orthogonal
distance regression fitting2 for seven geometry types:
line, circle, plane, sphere, cylinder, cone, and torus.
(Lines and circles are fit to three-dimensional point co-
ordinates which need not be coplanar.) The reader is
referred to Ref. [9] for information on how to use
ATEM-CMS and the procedures used by NIST for con-
ducting a test. Section 3 below describes the specific
difference parameters used in ATEP-CMS for each
geometry type.

2.2 Criteria for Performance Measures

In developing performance measures, the question
naturally arises as to how one might choose one measure
over another. One approach is to seek a reliable method
of certifying software as “good” or “bad.” (This is the
approach taken, for instance, by the German testing
program [3].)

The approach taken in ATEP-CMS is somewhat dif-
ferent. We start with the observation that software is not
mathematically perfect. (If nothing else, the end results
must be represented in finite precision.) So rather than
developing a pass/fail criterion, ATEP-CMS quantifies
the expected performance numerically. The goal is to
develop numerical measures of performance that
provide to a user of the software, information necessary
to decide whether the software is adequate for a partic-
ular application. To this end, we have used the following
criteria in developing ATEP-CMS performance mea-
sures:

• each measure should be directly related to inspection
tasks;

• each measure should combine like a standard devia-
tion with other sources of uncertainty in a CMS;

2 Orthogonal distance regression is commonly called “least squares”
by manufacturing practitioners. Statisticians consider these two terms
to be quite different. Lease squares measures deviations from the
surface along a particular direction in a coordinate system. Orthogonal
distance regression (which is also called “errors in variables” regres-
sion or, for linear fits, “total least squares”) measures deviations per-
pendicular to the surface. Unfortunately, some of the literature (e.g.,
Ref. [8]) further confuses the terminology by using the term
“orthogonal distance regression” for one specific algorithm that solves
the orthogonal distance regression problem.
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• each measure should have reasonable probability and
coverage interpretations;

• an estimate of uncertainty should be derivable for
each measure.

The first three criteria directly support the goal of using
the performance measures to establish uncertainty bud-
gets for CMSs. The last criterion reflects the view that
an assessment of software uncertainty is itself a mea-
surement. By NIST [10] and international [11] guideli-
nes, a quantitative statement of uncertainty should be
part of any complete measurement result. The last crite-
rion says that the ATEP-CMS performance measures
must be amenable to such a treatment.

3. ATEP-CMS Test Methods

To start a software test, NIST generates a collection of
data sets for each geometry type, consisting of three-
dimensional point coordinates together with some book-
keeping information. NIST also generates a fit for each
data set, called thereference fitfor that data set. Within
ATEP-CMS, the reference fits are generated by fitting
the data sets using NIST-developed fitting algorithms.3

(It is also possible to start with the desired fits and
generate data sets having those fits as answers [13].)

The data sets are then sent to the software under test,
which generates atest fit for each data set. The test fits,
represented by a set of parameter values in a standard
format, are returned to NIST for evaluation with respect
to the corresponding reference fits.

This section describes how differences between a test
fit and the corresponding reference fit are evaluated in
ATEP-CMS. Differences between each pair of fits are
represented by a set ofdifference parameters.Each ge-
ometry type gives rise to its own set of difference
parameters. The relationship between the difference
parameters and tolerance applications is also discussed.

3.1 General Procedure for a Single Fit

Methods for comparing one fit to a reference are
described in the draft B89.4.10 standard [6]. The proce-
dure for all geometry types follows a common pattern.

First, the test fit is bounded by projecting the data
points onto the geometry. (The way this is done depends

3 A small disclaimer is in order here. The use of the term “reference
fit” is not meant to imply that the ATEP-CMS fitting algorithms are
“standard algorithms” for geometric fitting problems. For instance,
the algorithm used in ATEP-CMS for nonlinear orthogonal distance
regression (see Sec. 5.1.3) was chosen for its efficient use of memory,
but its use of normal equations in the iteration are a known weakness.
Algorithms with superior numerical properties are widely available
(see, e.g., Refs. [12, 8]) and may be used by ATEP-CMS in the future.

on the geometry type, and will be described below.
Also, bounding does not apply to circles, spheres, or
tori, which are naturally bounded.) This is done because
tolerancing standards (e.g., Ref. [14]) specify that toler-
ances are to be evaluated over the full extent of the
associated geometric features. ATEP-CMS assumes
that the data points represent the features.

Once the test fit is bounded, geometric differences
between the test fit and the reference fit are determined.
Again, the specifics depend on the geometry type. In
general, however, the differences are designed either to
directly reflect a tolerancing application or to provide
diagnostic information about the software under test.
The difference parameters depend only on the geometry
represented by the fit parameters, and not on the
parameterization of that geometry.

Finally we note that in many cases the difference
parameters are not symmetric. This is a result of the
asymmetric treatment of the test and reference fit (the
test fit is bounded; the reference fit is not). Thus, revers-
ing the roles of test and reference fit will generally
change the difference parameter values.

3.2 Application to Specific Geometry Types

The remainder of this section discusses the applica-
tion of the general procedure to the seven geometry
types currently supported by ATEP-CMS: lines, circles,
planes, spheres, cylinders, cones, and tori. For each
geometry type, we describe the fitting objective, typical
uses for such fits in inspection, and the difference
parameters computed within ATEP-CMS.

3.2.1 Lines Line fitting minimizes the sum of
squares of orthogonal distances from the points to the fit
line. Line fitting is commonly used to check straightness
and to establish an axis from the centers of circular cross
sections. In the latter case, the axis may be checked for
location or orientation or used as a coordinate datum
axis.

Within ATEP-CMS, two parameters representing dif-
ferences between the lines are computed. (Henceforth,
we will call such parameters,difference parameters.)
One difference parameter is the angle between the test
and reference lines. This directly relates to the use of the
fit as a datum axis. To define the other parameter, the
test fit line is first trimmed to a segment by the orthog-
onal projection of the data points. Then the second
parameter is the maximum orthogonal distance from the
segment endpoints to the reference line. This is a
measure of separation between the lines and directly
relates to the assessment of straightness, position,
and orientation. Both parameters are inherently non-
negative quantities. (Henceforth, quantities that are in-
herently nonnegative will be referred to asmagnitudes.)
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3.2.2 Circles Circle fitting is a two-step process.
First, the plane of a circle is found by fitting a plane to
the data (as described below). Then, the points are pro-
jected into the plane and an orthogonal distance regres-
sion circle is fit to the projected points. Note that this
process generally results in a different circle than would
be found by using the three-dimensional distances from
the points to the circle.

Circle fitting is commonly used to check roundness,
runout, cross-sectional size, the straightness of the me-
dian line of a hole or shaft, and sometimes position. It is
also sometimes used as one step in finding an axis. The
purpose of the two-step fitting process is that, in prac-
tice, the deviations of the points from a plane usually
result from measurement error only, while the deviations
from a circle in the plane also include the effects of form
deviation of the part.

Within ATEP-CMS, three difference parameters are
computed. One is the angle between the planes of the
test and reference circles. This is primarily a diagnostic
measure4 that can explain other differences between the
fits. The second parameter is the Euclidean distance
between the circle centers, measured in three dimen-
sions. This relates directly to assessment of roundness,
position, and establishing an axis. The third parameter is
the difference between the test and reference circle radii.
This relates directly to the assessment of size. The first
two parameters are magnitudes, while the last parameter
is a signed quantity, and is negative whenever the test fit
radius is smaller than the reference fit radius.

3.2.3 Planes Plane fitting minimizes the sum of
squares of orthogonal distances from the points to the fit
plane. Plane fitting is commonly used to establish a
coordinate datum plane and to check flatness, position,
and orientation.

Within ATEP-CMS, two difference parameters are
computed. One parameter is the angle between the test
and reference planes. This directly relates to the use of
the fit as a datum plane. To define the second parameter,
the data points are orthogonally projected onto the test
fit plane. The convex hull of the projected points in the
plane forms a planar patch. The second parameter is the
maximum separation of the planar patch measured or-
thogonally from the reference plane. This measure of
separation directly relates to the assessment of flatness,
position, and orientation. Both parameters are magni-
tudes.

3.2.4 Spheres Sphere fitting minimizes the sum
of squares of orthogonal distances from the points to the
fit sphere. Sphere fitting is commonly used to check

4 For instance, it can be used to detect if something other than the
two-step fitting process was used by the software under test.

form, size, and location, and occasionally to locate the
origin of a coordinate system.

Within ATEP-CMS, two difference parameters are
computed. The first parameter is the Euclidean distance
between the sphere centers. This relates directly to as-
sessment of form, position, and establishing an origin.
The second parameter is the difference between the test
and reference sphere radii. This relates directly to the
assessment of size. The first parameter is a magnitude,
while the second is a signed quantity, and is negative
whenever the test fit radius is smaller than the reference
fit radius.

3.2.5 Cylinders Cylinder fitting minimizes the
sum of squares of orthogonal distances from the points
to the fit cylinder. Cylinder fitting is commonly used to
check cylindricity and size, and to establish an axis. In
the latter case, the axis is used to check position and
orientation and to establish a coordinate datum.

Within ATEP-CMS, three difference parameters are
computed. One parameter is the angle between the test
and reference cylinder axes. This directly relates to the
use of the fit as a datum axis. To define the second
parameter, the test fit axis is first trimmed to a segment
by the perpendicular projection of the data points. Then
the second parameter is the maximum perpendicular
distance from the segment endpoints to the reference
cylinder axis. This is a measure of separation between
the axes and directly relates to the assessment of cylin-
dricity, position, and orientation. The third parameter is
the difference between the test and reference cylinder
radii. This relates directly to the assessment of size. The
first two parameters are magnitudes, while the third is a
signed quantity, and is negative whenever the test fit
radius is smaller than the reference fit radius.

3.2.6 Cones Cone fitting minimizes the sum of
squares of orthogonal distances from the points to the
cone surface. Cone fitting is commonly used to check
profile and conical taper.

Within ATEP-CMS, four difference parameters are
computed. One is the angle between the test and refer-
ence cone axes. This directly relates to the use of the fit
for checking profile. To define the next parameter, the
test fit axis is first trimmed to a segment by first project-
ing the data points perpendicularly onto the cone surface
and then orthogonally projecting the projections onto
the cone axis. Then the second parameter is the maxi-
mum perpendicular distance from the segment end-
points to the reference cone axis. This is a measure of
separation between the axes and relates to the assess-
ment of profile. To define the third parameter, the refer-
ence cone axis is bounded using the same process as was
used for the test fit. For each fit, the perpendicular
distance from the midpoint of the axis segment to the
corresponding cone surface is a measure of location of

566



Volume 100, Number 5, September–October 1995
Journal of Research of the National Institute of Standards and Technology

the cone along its axis. The third parameter is the differ-
ence between the location of the test fit cone and the
location of the reference fit cone along their respective
axes. This is primarily diagnostic, and relates to the
assessment of profile. The last (fourth) parameter is the
difference between the test and reference cone half-an-
gles. This relates directly to the assessment of conical
taper. The first two parameters are magnitudes, while
the last two are signed quantities, and are negative
whenever the test fit cone parameter is smaller than that
of the reference fit.

3.2.7 Tori Torus fitting minimizes the sum of
squares of perpendicular distances from the points to the
torus surface. Torus fitting is commonly used to check
major and minor radii and profile. Occasionally torus
fitting is used to establish a datum axis or plane.

Within ATEP-CMS, four difference parameters are
computed. One is the angle between the test and refer-
ence torus planes. This directly relates to the use of the
fit for checking profile and as a datum plane or axis. The
second is the Euclidean distance between the torus cen-
ters. This also relates to the assessment of profile. The
third and fourth parameters are the difference between
the test and reference fit major and minor radii. These
relate directly to the assessment of major and minor
radius tolerances. The first two parameters are magni-
tudes, while the last two are signed quantities, and are
negative whenever the test fit torus parameter is smaller
than that of the reference fit.

4. Data Interpretation

The previous section described how each data set
generates a set of difference parameters representing the
differences between the test fit to the data set and the
corresponding reference fit. In this section we discuss
how these difference parameters are summarized into
performance measures. For each difference parameter,
we will define an associated performance measure sum-
marizing the difference parameter values for all the data
sets.

We consider the set of difference parameter values
associated with each data set to be one (random) sample
of software performance from a theoretical underlying
population of inspection problems. We will use a statis-
tical approach to the interpretation of the observed sam-
ple values. In Sec. 4.1 we derive the population charac-
teristic we wish to use as a performance measure. In
Sec. 4.2 we derive a practical estimator for that measure.

4.1 Statistical Model of Algorithm Behavior

We deal with each geometry type separately, and
consider each performance measure (and associated
difference parameters) independently. For simplicity,

consider a single performance parameter for a given
geometry type, as described in Sec. 3. Each data set
represents an inspection problem drawn at random from
a theoretical underlying population of inspection prob-
lems. We call the substitute geometry defined by the
mathematical objective function thetrue fit to the data
set. We assume the true fit cannot be computed exactly.
For the i th data set, we now define three difference
parameter values:

ti — the difference between the test fit and the true
fit to the data set;ti is unknown and unobserv-
able.

ri — the difference between the reference fit and
the true fit to the data set;ri is unobservable,
but it can be bounded using numerical analysis
theory (see Sec. 5).

pi — the difference between the test fit and the
reference fit to the data set;pi is the calculated
difference parameter for thei th data set.

These quantities are random variables since they are
functions of the data set, which is a random sample. As
random variables, we can define various expectations.
For the test fit quantitiesti we define the mean

mT = E(ti ) ;

the standard deviation

sT = ÏE((ti – mT)2);

and the root-mean square error (rmse)

gT = ÏE(ti
2) ,

whereE( ) denotes the average over all the data sets—
that is, the expected value taken over the theoretical
population of inspection problems. We define analogous
quantities forri : mR, sR, andgR; and forpi : mP, sP, and
gP.

If the ti are normally distributed, then one can make
statements of coverage like

Pr { | ti – mT |# 2sT } ≈ 0.95. (1)

This approach has two shortcomings. First, two parame-
ters,mT and sT, are needed to summarize the test; for
simplicity, we would like a single measure of perfor-
mance. Second, it is difficult to estimatemT and sT,
because we do not know the true fit.
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If mT is less than half ofsT, then the rmse provides
similar coverage.5

Pr { | ti | # 2gT : mT < sT/2} ≈ 0.95.

If mT > sT/2, the actual coverage is greater (the software
performance is better) than that suggested by a measure
based ongT.

The above coverage interpretations are valid for nor-
mal distributions. We believe that for the typical distri-
butions that will arise, the coverage error will be on the
conservative side since the tails are likely to be smaller
than those of a normal distribution.6

ATEP-CMS usesgT as the theoretical performance
measure of the software under test. Using the rmse
overcomes one shortcoming of Eq. (1)—we have
reduced the performance indicator to a single number.
We have also replaced the problem of estimatingmT and
sT with the problem of estimatinggT. We consider this
next.

4.2 Definition of Practical Performance Measures

In this section, we will describe two methods of esti-
matinggT. The first follows directly from the definition
of gT. The second is a simplified estimate. ATEP-CMS
uses the second method, for reasons discussed at the end
of this section.

We observe from the definitions thatti = pi + ri for
signed parameters, andti # pi + ri for magnitudes. Then
a simple substitution yields

gT
2 = E (ti

2)

# E(pi
2) + E(ri

2) + 2E(pi ri )

# gP
2 + gR

2 + 2gP gR.

Thus, we can estimate an upper bound forgT if we can
estimategR andgP. The upper bound can then be used
as an estimate forgT.

To estimategR, we need an estimate of the difference
of each reference fit from the true fit. Methods for doing
this will be discussed in detail in Sec. 5. For now,
assume that the value ofri can be estimated asui . Then
an estimate7 ĝR of gR is the positive square root of

ĝR
2 =

1
n On

i=1

ui
2 ,

5 See, e.g., Ref. [15, Chap. 2].
6 This assumption will be tested using data collected during future
operation of ATEP-CMS.
7 Throughout this paper, a carat appearing over a quantity denotes an
estimated value.

where the sum is over alln data sets. (In this paper, all
summations are fromi = 1 to n unless otherwise indi-
cated. Henceforth, we will use the summation sign alone
with the index variable and limits understood.) Similarly,
we estimategP by the positive square root of

ĝP
2 =

1
n O pi

2 .

This first estimation method includes a term in the
performance measure that represents the estimated dif-
ference between the reference and true fits.

A second method of estimatinggT is simply ĝT = ĝP,
estimatinggP as before. This method uses the reference
fit as an estimate of the true fit. Unlike the first ap-
proach, the differences between the reference and true
fits are not incorporated in the performance measure of
the software under test. However, they will contribute to
the uncertainty of the performance measures (discussed
in Sec. 5).

An argument in support of the first method of estima-
tion is that the second, simpler method may underesti-
mate the true quantity. If the performance measures are
to be used to establish uncertainty budgets for a CMS,
use of the second method makes it critical to analyze the
sensitivity of the budget to the uncertainties of the
ATEP-CMS results. The first method may have smaller
uncertainties.

On the other hand, there are three reasons why the
simpler estimate is preferable. First, the software under
test should not be penalized simply because the refer-
ence software has uncertain performance. Second, the
first method may overemphasize the role of the refer-
ence software, and may be unduly pessimistic (since it is
an upper bound). Finally, a sensitivity study is a proper
precaution, and should be recommended anyway.

For these reasons, ATEP-CMS uses the second
method—the observed sample rmse—to estimate the
performance of the software under test. That is, for each
performance measure in ATEP-CMS,

ĝT = ĝP = Î1
n O pi

2 .

5. Uncertainty Analysis

This section addresses the uncertainty of the ATEP-
CMS estimates of software performance. Recall that we
have defined different performance measures for each
geometry type, and that each performance measure is
estimated from the corresponding set of difference
parameters for the fits. We will show in this section that
the uncertainty of each estimate arises mainly from two
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sources: (1) the uncertainty of the individual difference
parameters due to the uncertainty of the reference fit
and (2) the uncertainty arising from having sampled the
population of inspection problems.

In Sec. 5.1 we will first examine the uncertainties of
the reference fits themselves. In Sec. 5.2 we then exam-
ine how these uncertainties propagate to the difference
parameters. Finally, in Sec. 5.3 we discuss how the
difference parameter uncertainties combine with the
sampling uncertainty to yield an overall uncertainty for
each performance measure.

5.1 Uncertainty of Reference Fits

The uncertainties of the difference parameters for a
single test fit arise primarily from the uncertainty due to
the presence of (unknown) numerical errors in the refer-
ence fit.8 That is, the reference fit may not correspond
exactly to the true fit. A detailed discussion of the NIST
fitting algorithms and their uncertainties will be pre-
sented in a subsequent report. Here, we provide a sum-
mary of the pertinent results.

Our approach is to develop bounds for the numerical
errors, assume the errors are uniformly distributed be-
tween the bounds, and combine the standard deviations
of the errors into the uncertainty of the reference fits.
The results presented in this section and the next are
specific to the particular algorithms currently used in
ATEP-CMS. It is possible that the algorithms may
change in the future [16], in which case these results
would no longer hold. (The performance measures
would not change, however.)

5.1.1 Centroid Coordinates For all fits, the data
are first translated to be centered at the origin. One
source of uncertainty is the possible rounding error in
computing the centroid. The ATS algorithms use the
Kahan summation algorithm [17] with a C-language
long double accumulator (80 bit IEEE extended real
format). The error in the coordinates of the computed
centroid can be bounded in terms of the unit roundoff
«80 for the accumulator (about 1.084310–19). For in-
stance, ifxc is the computedx coordinate of the centroid
(the average of the coordinatesxi , i = 1, . . . ,m) andx0

is the true coordinate, then the following result holds:

xc =
1
m Om

i=1

xi (1 + di ) + O(10–38) Om
i=1

|xi |

≈ x0 +
1
m Om

i=1

xi di,

where |di | # 2«80 ≈ 2.17310–19 and in the second line
we have ignored the term inO(10–38). Similar results

8 Other errors, such as floating-point roundoff during evaluation of the
difference parameters, are considered small enough to be ignored.

hold for they andz coordinates.
To conform to NIST policy on uncertainty statements,

this must be converted to an uncertainty by assuming
some distribution on the possible values ofdi . We will
assume that thedi are independent and uniformly
distributed within the bounds [18]. Then thei th error
term xidi is a random variable with mean of zero and
standard deviation 2|xi |«80/Ï3. So, by the Central
Limit Theorem [19], thex coordinate of the computed
centroid of m data points is approximately normally
distributed with meanx0 and standard deviation of

1.25310–19 Ïoxi
2

m

Similar results hold for they and z coordinates. For
simplicity, the uncertainty of the centroid is modeled in
ATEP-CMS by an isotropic, trivariate normal distribu-
tion using a standard deviation of

u0 = 1.25310–19 smax/m,

where

smax = maxHÏoxi
2, Ïoyi

2, Ïozi
2 J .

5.1.2 Linear Fits (Lines and Planes) For lines
and planes, orthogonal distance regression can be for-
mulated as a linear algebra problem. Within ATEP-
CMS, the reference fits are computed using the singular
value decomposition of the data matrix after translating
the centroid to the origin. The properties of the singular
value decomposition are well understood, and the mag-
nitude of the error in the direction vector can be bounded
using standard techniques [20] as follows.

We consider first the case of line fits. The direction of
the line is the right eigenvector corresponding to the
largest singular value of the data matrix. The singular
value decomposition is computed using C-language
double (64 bit IEEE real format) arithmetic, for which
the unit roundoff is«64 ≈ 2.22310–16. Call the data
matrix D and denote the exact solution byQ*. It can be
shown that the computed solution,Q, is (within «64) the
exact solution to a matrixD + E where iEi2 < «64 iD i2.
(Here,i ? i2 denotes the vector or matrix 2-norm.) From
this, it can be shown that [20], as long as the largest
singular value is well separated9 from the next largest
singular value in comparison toiEi2, the error in the
computed solution is bounded by

iQ–Q* i2 # 4«64
l1

2

| l1
2–l2

2 |
(for lines),

9 The notion of “well separated” can be made precise. Essentially, it
means that the data has one dominant direction of scatter (so a line fit
makes sense).
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where l1 is the largest singular value andl2 is the
next-largest singular value. (This bound is not the tight-
est possible. For instance, asl2→ l1, the bound can far
exceed the theoretical worst-case difference betweenQ
andQ* of 2. In such situations, however, the singular
values are not well separated. Within ATEP-CMS, the
error bound is never allowed to exceed 2.)

Similar results can be obtained for plane fits. In this
case, however, the normal to the plane is the right eigen-
vector corresponding to thesmallestsingular value,l3.
The corresponding error bound is

iQ–Q* i2 # 4«64
l3

2

| l2
2–l3

2 |
(for planes).

We have here developed overall bounds for the errors
in the eigenvectors. To convert these to standard uncer-
tainties, we assume the errors are uniformly distributed
within the bounds. The resulting standard deviation,
denoteduD, is given by

uD = 5
4«64l1

2

Ï3 |l1
2 – l2

2 |
(lines)

4«64l3
2

Ï3 |l2
2 – l3

2 |
(planes).

These results are quite conservative. In general any one
eigenvector will be more sensitive in one direction than
another to perturbations in the data. This behavior could,
in principle, be used to develop tighter bounds on the
numerical errors propagated through the difference
computations. Such an analysis will be the subject of
future work.

5.1.3 Nonlinear fits For geometries other than
line and plane (circle, sphere, cylinder, cone, and torus),
orthogonal distance regression is a nonlinear least-
squares optimization problem. (Circle fitting uses plane
fitting to reduce the problem to two dimensions.) The
algorithm currently used in ATEP-CMS to compute the
reference fits is a modified Levenberg-Marquardt
algorithm proposed by Nash [21].

The ATEP-CMS algorithm starts with an initial guess
and iteratively solves the normal equations for a linear
approximation to the nonlinear objective function,
where the solution is constrained to lie within a “trust
region” of the current best guess. The iterations termi-
nate when the computed solution to the normal equa-
tions changes the solution by less than a convergence
factor set by the tester. (Typically, the convergence
factor used in ATEP-CMS is 10215.)

The uncertainty of the reference fit is a combination
of two factors. First, the termination logic introduces an

uncertainty that is bounded by the convergence factor
setting. Second, the solution to the normal equations at
the terminating iteration is subject to numerical round-
off effects.

The convergence factor introduces an uncertainty in
each element of the computed solution. If the calculated
solution is ak-dimensional vectorF , if F * is the exact
solution, and ifC is the convergence factor, then the
resulting error due toC alone is bounded by

i F–F* i2 # CÏk.

We next deal with the numerical inaccuracies. The
fits are calculated using the Choleski decomposition of
the normal equations in C-language double arithmetic,
so the error in the solution due to numerical roundoff
effects alone can be bounded by

i F–F* i2 # «64 k (A) i F i2

where k (A) is the condition number of the normal
equation matrixA used for the last iteration of the
Levenberg-Marquardt routine, and«64 ≈ 2.22310–16 as
before [20].

To obtain an overall uncertainty, we must convert
these bounds into standard deviations. We assume that
the numerical errors and the convergence factor errors
are independent and uniformly distributed between the
bounds. Denote byuF the standard uncertainty for non-
linear fits. Then

uF = ÎC2k
3

+
«64

2 k2 (A) i F i2
2

3
.

As with linear fits, the bounds developed here bracket
the overall behavior of the fit parameter vector. But as
with the singular value decomposition, the solution to
the nonlinear problem will in general exhibit greater
sensitivity and correlations for some parameters than for
others. Thus, it may be possible to obtain tighter uncer-
tainty bounds than those developed here. One problem is
that, for geometries other than the sphere, the parame-
terization used for fitting must somehow represent the
orientation of the element. Unfortunately, there is no
parameterization of orientations that is free of singular-
ities, and there is always the possibility that the Jacobian
of the residuals is rank deficient. This makes traditional
approaches using, for instance, the condition number of
the asymptotic covariance matrix at the computed solu-
tion problematic [22]. As with the singular value de-
composition, future work will address tightening the
bounds on the fit uncertainties.
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5.2 Propagation to Difference Parameters

This section discusses how the uncertainties of the
computed reference fits propagate to the difference
parameters for individual fits. As with Sec. 5.1, the
results of this section are specific to the particular
algorithms currently being used within ATEP-CMS.

The previous section identified several sources of
standard uncertainty for the reference fits. We have
designated these as follows:

u0—the standard deviation of the centroid coordinates

uD—the standard deviation of the error in direction for
line and plane fits

uF—the standard deviation of the error norm of the
representation parameter vector for nonlinear fits.

We will separately propagate the standard uncertain-
ties represented by each of these standard deviations
through the comparison algorithms and combine the
resulting standard uncertainties.

The calculations are fairly straightforward, but
tedious. Therefore, we will show details only for the
case of the uncertainties of line fits. For other geometry
types, we will just present the final results, since the
method is the same.

5.2.1 Line Line differences are defined by two
characteristics: the angle between the test and reference
lines, and the distance of an endpoint of the test line
segment to the reference line. For the angle, we proceed
as follows. As in Sec. 5.1.2, letQ be the direction of the
computed reference line andQ* the direction of the true
reference line. Also, letQT be the direction vector of the
test fit,a be the angle betweenQ andQT, anda* be the
angle betweenQT andQ*. Since all the direction vectors
are unit vectors, the sine of the angle between any two
of the vectors is the magnitude of their vector cross-
product. We then have:

sin (a ) = iQT 3 Q i2

= iQT 3 (Q* + (Q–Q*)) i2

= iQT 3 Q* + QT 3 (Q – Q*)) i2

# i QT 3 Q* i2 + i QT 3 (Q–Q*)) i2

# sin (a*) + i Q–Q* i2.

If we start with sin(a*) = iQT3Q* i2 and follow a sim-
ilar sequence, we find that sin(a*) # sin(a )+ iQ–Q* i2.
Assuming thata and a* are small (i.e., that the

test and reference results are close), sin(a )≈ a and
sin(a*) ≈ a*. Thus, |a–a*| # iQ–Q* i2. Using the
results of Sec. 5.1.2,iQ–Q* i2 is the random variable
corresponding to a standard deviation ofuD. We then
have

ua = uD.

We now consider the distance from any pointb to the
reference line. Call this distanced. The reference line
is located by the centroid of the data,q0, so
d = i(q –q0)3Qi2. Two components of the fit uncer-
tainty affect the uncertainty ofd: the uncertainty ofQ
and the uncertainty ofq0. We treat these as independent
sources of uncertainty and combine them in quadrature.
With regard toQ, we proceed as we did witha and find
that the uncertainty ind due to the uncertainty inQ is
bounded by

iq–q0i 2 iQ–Q* i2.

The standard uncertainty ind due to the standard uncer-
tainty in q0 is u0. Thus, the standard uncertainty of the
separation parameter for lines is

ud = Ïu0
2 + i q–q0 i2

2 uD
2 ,

whereq is now the endpoint on the test line segment
furthest from the reference line.

5.2.2 Circle The standard uncertainties in the
difference parameters for circles are as follows:

• distance between centers:uc = Ïu0
2 + uF

2

• angle between planes (due to the plane fits):ua = uD

• difference in radii:ur = uF.

5.2.3 Plane The standard uncertainties in the dif-
ference parameters for planes are as follows:

• angle between planes:ua = uD

• plane separation: ud = Ïu0
2 + i q–qr i2

2 uF
2 , where

q is the point on the test plane furthest from the
reference plane andq0 is the centroid of the data.

5.2.4 Sphere The standard uncertainties in the
difference parameters for spheres are as follows:

• distance between centers:uc = Ïu0
2 + uF

2

• difference in radii:ur = uF.

5.2.5 Cylinder The standard uncertainties in the
difference parameters for cylinders are as follows:

571



Volume 100, Number 5, September–October 1995
Journal of Research of the National Institute of Standards and Technology

• angle between axes:ua = uF

• axis separation:ud = Ïu0
2 + i q–qr i2

2 uF
2 whereq is

the endpoint of the test fit axis furthest from the
reference fit axis andqr is the point used to locate the
reference fit axis

• difference in radii: ur =uF

5.2.6 Cone The standard uncertainties in the
difference parameters for cones are as follows:

• angle between axes:ua = uF

• axis separation:ud = Ïu0
2 + iq–qi2

2uF
2, whereq is

the endpoint of the test fit axis furthest from the
reference fit axis andqr is the point used to locate the
reference fit axis

• difference in axial location: u1 = Ïu0
2 + uF

2

• difference in half-angle:uh = uF

5.2.7 Torus The standard uncertainties in the
difference parameters for tori are as follows:

• angle between planes:ua = uF

• center separation:uc = Ïu0
2 + uF

2

• difference in major radii: uM = uF

• difference in minor radii: um = uF

5.3 Uncertainty of the Estimated Performance
Parameters

The results of Sec. 5.2 provide us with a means of
estimating the uncertainties, expressed as standard
deviations, of individual difference parameterspi for
individual data sets. Using this, we can now estimate the
uncertainty of the software performance measures for
each geometry type.

Recall (from Sec. 4.2) that for a particular perfor-
mance characteristic, we are estimating the performance
measure by the observed root-mean-square value of the
difference parameters:

ĝP = Î1
n O pi

2 .

Furthermore, we have an estimate, denoted byui , for the
standard deviation of eachpi attributable to the uncer-
tainty of the reference fit.

Our objective is to estimate the variance ofĝ P. To that
end, we will use the following identity:

V(ĝP) = EA [V(ĝP|A)] + VA [EĝP|A)],

whereA is a random event,E(ĝP|A)and V(ĝP|A) are,

respectively, the expected value and variance ofĝP

conditional on eventA, andEA[ ] and VA[ ] are, respec-
tively, the expected value and variance over all eventsA.
This identity, which follows from the theorem of total
probability, helps us estimate the variance ofĝP by using
the observed sample of performance for the data sets we
used.

Let A be the event that the sample of observations is
the one we indeed observed. (By conditioning onA we
are treating the sample as fixed and not random.) We
can interpret the two terms of the variance as follows.
The first term,EA[V(ĝP|A)] represents the component
of standard uncertainty due to the uncertainty of the
reference fits. We will denote this quantity byuR

2,
meaning “square of the standard uncertainty due to the
reference.” The second term,VA[E(ĝp |A)], represents
the component of standard uncertainty due to the varia-
tion in the sampling. We will denote this byuS

2, meaning
“square of the standard uncertainty due to sampling.”
We now develop estimates for the two components of
uncertainty, starting withuR.

5.3.1 Uncertainty Due to the Reference To esti-
mateuR, we must first estimateV(ĝP|A). ConsideringĝP

as a function of thepi , we have, using the law of propa-
gation of uncertainty

V(ĝP|A) ≈ O F­ ĝP

­pi
G2

ui
2 =

opi
2 ui

2

nSpi
2 .

(If all the pi are zero (as might happen, for example, if
the NIST algorithms are tested against themselves), then
this estimate is indeterminate. However, wheneverpi is
small in relation toui , we can improve the estimate by
evaluating the partial derivatives in the propagation for-
mula at the expected value of |pi | instead of at the
expected value ofpi . To do this, we assume thatpi is
distributed uniformly about the observed value within
6Ï3ui . Then, whenever |pi | < Ï3ui the mean should
be modified to include the “folding back” at zero of the
distribution of |pi |. The result is

V(ĝP|A) ≈ op̃i
2 ui

2

nSp̃i
2

where

p̃i = 5pi
2 + 3ui

2

2Ï3ui

if pi
2 < 3ui

2

This approximation toV(ĝP|A) is used in ATEP-CMS
as an estimate ofEA[V(ĝP |A)]

ûr
2 =

op̃i
2ui

2

nop̃i
2

pi if pi
2 $ 3ui

2
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(If all the p̃i are zero—that is,ui = 0 wheneverpi = 0—
then we setûR = 0.)

The component of standard uncertainty due to the
reference is estimated from numerical analysis consider-
ations and, in the language of the guidelines on uncer-
tainty [11, 10], is a Type B standard uncertainty.

5.3.2 Uncertainty Due to Sampling Varia-
tion We now turn touS

2, the component of standard
uncertainty due to sampling. To estimateuS

2, we need to
estimateE(ĝP|A). We do this by simply using a zero-or-
der expansion ofĝ P about thepi , giving E(ĝP|A) ≈ ĝP,
and we are left with estimatingVA(ĝP). If ĝP = 0, we
estimateVA (ĝP) = 0. Otherwise we proceed as follows.
By the law of propagation of uncertainty,

VA(ĝ ) ≈ 1
4ĝP

2 VA(ĝP
2) =

1
4n2ĝP

2 OVA(pi
2).

For convenience, we denote bysA
2 the mean variance of

the pi
2 over all samples

sA
2 =

1
n OVA (pi

2).

Since ĝp is estimated from the sample, an unbiased
estimate forsA

2 is:

ŝA
2 =

1
n –1O(pi

2 – ĝP
2)2.

We then have

ûS
2 =

S(pi
2 – ĝP

2)2

4n(n – 1)ĝP
2 =

S (pi
2 – ĝP

2)2

4(n–1) Spi
2 ,

with ûS = 0 if all of the pi = 0.
Since the component of uncertainty due to sampling

is estimated from a statistical analysis of data, it is a
Type A standard uncertainty, withn–1 degrees of free-
dom.

5.3.3 Combined Standard Uncertainty Putting
the two terms of the variance identity together, the com-
bined standard uncertainty of the estimated perfor-
mance parameterĝP is the positive square root of the
estimated variance ofĝP

V(ĝP) = uR
2 + uS

2 ≈ Sp̃i
2ui

2

nSp̃i
2 +

S(pi
2 – ĝP

2)2

4(n–1)Spi
2 .

Following NIST convention, the expanded uncertainty
reported by ATEP-CMS is twice the combined standard
uncertainty (i.e., a coverage factor ofk = 2).

6. Summary

This paper has described how NIST evaluates the
performance of geometric fitting software used for in-
spection. The NIST service, ATEP-CMS, is the only
known test that provides quantitative measures of per-
formance, complete with statements of uncertainty in
accordance with international standards.

ATEP-CMS is something new in the way of calibra-
tion services. It is the only test of software offered by
NIST in the field of dimensional metrology. It has the
status of a Special Test, rather than a Calibration
Service, because it is an experiment for us. The state-
ments of uncertainty, in particular, are unsupported by
any historical data. We believe, however, that they are
fundamentally sound. We have tested some of our capa-
bilities by running our software on both a personal
computer and on NIST’s supercomputer. These limited
results support the validity of our approach.

This paper has focused on the performance measures
used in ATEP-CMS; we have not discussed testing pro-
cedures. However, one key aspect of those procedures
bears discussion: the selection of data sets to be used for
the test. We use the collection of data sets as if the
average performance of the software over those prob-
lems represents the average performance of the software
when it is used in production. To help ensure this, we use
a stratified sampling approach in designing data sets for
a test. Through judgment, we define ranges of parame-
ters for inspection problems, including ideal geometry,
form errors, surface sampling plans, and point measure-
ment errors. Within each range, we select a representa-
tive sampling of data sets. We believe that this mixed
approach improves the quality of the test.

We expect to refine our procedures as we gain experi-
ence in testing. We also plan to extend the scope of our
testing services beyond orthogonal distance regression
to include other fitting methods and other common
CMS software functions [23].

The methods described in this paper demonstrate that
classical concepts of metrology can beused to assess
the performance of software, when that software forms
part of a measurement system. Moreover, it seems that
performance testing like that offered by ATEP-CMS is
a requirement if CMS measurements are to be traceable
to accepted standards of length.
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